DIFFERENT MODES OF HEATING WHEN HIGH-POWER
RADIATION FLUXES INTERACT WITH A MATERIAL
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The gas-dynamic and thermal processes which occur when a high-power flux of laser radi-
ation interacts with a material are investigated., Fluxes for which the sublimation energy
can be neglected compared with the thermal and kinetic energy of the vapors formed are
considered. The electron thermal conductivity is considered as well ag the hydrodynamic
dispersion, The properties of different modes of propagation of temperature waves in a
moving medium are studied. The case of an infinitely large absorption coefficient is given
particular attention,

1. The possibility of attaining temperatures of the order of 10K by concentrating a high-power flux
of laser radiation on a small mass of material has been discussed in {1-3]. The overall energy in the
pulse in this case is comparatively small. It has been pointed out [1] that the increase in temperature
is limited by the electron thermal conductivity.

Analysis of the solution of the gas~dynamic equations taking into account heat transfer by radiation
and thermal conductivity shows that two qualitatively different modes of propagation of heat in a moving
medium exist, namely, the so-called TW~I (a temperature wave of the first kind) and TW-II (a tempera-
ture wave of the second kind).

The existence of two types of temperature waves was first pointed out in [4], In [5], which is de-
voted to a self-similar solution of the one-dimensional plane problem of the motion of a piston in an ideal
heat-conducting gas, there is a detailed study of the properties of TW-I and TW-II, The different modes
of heating are also considered in [6-9].

2. We will construct a number of plane one-dimensional self-similar problems of radiation gas~
dynamics taking into account nonlinear thermal conductivity, by analyzing which we will obtain the quali-
tative characteristic of the two types of temperature waves, Despite the relative narrowness of the class
of appropriate self-gimilar solutions, the main properties of the TW-I and TW-II modes which emerge
from the analysis are also characteristic of the general case, when the conditions for self-similarity are
not satisfied. ’

We will agsume that the thermal conductivity and the absorption factor are power functions of the
temperature and density:

% =xT%" K =K,"o" 2.1)
In particular, for a completely ionized plasma (see [10]) the dimensionless constants in Eq, (2.1) are

a="%,, b=20, o, =3, b=2 (2.2)
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The gas is assumed to be ideal with the equation of state

P =RpT, e =RT/(y—1) 2.3)

where v is the ratio of the specific heats, and R is the universal gas constant,

The set of equations of gas dynamics in the one-dimensional plane approximation, taking the laser
radiation and the thermal conductivity into account, has the form

oy i 8 (1 )
S=—RamD 3 (5)=a
R. or 9w oW B
=T TRl ==, W=a+W. 2.4)
aT
W, = — %l 5

where m is the Lagrange mass variable, t is the time, v is the velocity, p is the density, P is the pressure,
T is the temperature, q is the flux density of the radiation, and W, is the heat flux due to the electron ther-

mal conductivity,
We will consider two problems,

Problem A, The radiation flux is completely absorbed in the region of the boundary of the gas with
the vacuum or with the piston (m=0), In the region m >0 the heat transfer is purely by thermal conduction:

: gpt* for m =0
qz{OD for m>0 : @.5)

where q, and q are constants,

Problem B. At the boundary m=0 we are given the radiation flux

70, §) = qof 2.6)

In the region m >0 the following transfer equation holds:

9q10m = — KoT%p" g @.7)

For both problems we will assume that at the point m=0 the following conditions are also satisfied:

for the vacuum
PO, =0, W0, =0 (2.8)
for the piston
v (0, ) = vt™, W,(0, £) =0 @.9)
The initial conditions for t=0 for all m > 0 have the form
v(m, 0) =0, T(m,0) =0, p(m,0)=p, (2.10)
Analysis shows that the solution of problem A is self-similar if the following conditions are satisfied:;
g="h(@—1), no="h @.10)

The solution of problem B is self-similar if conditions (2.11) are satisfied and there is also the fol-
lowing additional relation betweenibe parameters a and a; (see [11]):

o =Y —a (2.12)
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If the self-similarity conditions are satisfied [Eq, (2,11) or Eqs. {2,11) and(2.12)], the independent
variables m and t and the required functions can be represented in the following form:

m = Sq:)/ap:]/xt1+g/3, v (m, t) =a (S) q;/apal/stg/3
p(m, £) =8(s)p0, T (m, £) = f(s) @05 "R 1% ® 2.13)
We(m, £) = o (s)got®,  q(m,t) =@ (s)qot®

Using Egs. (2.13), we obtain from Egs. (2.4) a system of ordinary differential equations of the form

nya — nsa’ 4+ (6f) = , nséY + o =0
(v — 1) Crof — nsf) + 8fa” + (04 ¢) =0 (2.14)
W = — AfUSTY

where
no=g/3, n=14%g/3
In addition, for problem A we have
0 =1, ¢ =0 for s>0 (2.15)
and for problem B we have

0 =1, ¢ =—of8 g for s> 0 (2.16)
The dimensionless quantities A and ¢ have the form
A= % q2(a——1) / _3p3—(2a+1) /c; R—(a-}—l), s =K, q(()za.+1) /3 pg,—x/ﬂ—_.zz{,/:s R (2.17)
In Eq. (2.14) we have denoted the derivatives with respect to the dimensionless variable s by f!, o',

etc.

For both problems the boundary conditions (2,8)-(2-10) in the dimensionless variables (2.13) have
the form:

in the case of a vacuum

§(0) =0 @.18)

in the case of a piston

‘ 0 (0) = ag = vpyh/ g'h ‘ - 2.19)
®{(0) =0, a(o) =0, f(0) =0, o(0)=0, 8&(c0)=1

3. We will now consider problem A in more detail. The analysis and construction of some examples
of self-similar solutions of problem B are considered in [11]. We note that the case when the medium is
assumed to be optically thick and the radiation is described within the framework of radiant thermal con-
duction also reduces to problem A, This case has been investigated in detail by solving the problem of a
piston with given temperature conditions in [5].

We will formulate the main results of the investigations made previously.

It has been shown that the solution of problem A for ¢ >0 has the form of a temperature wave which
propagates with finite velocity. The position of the temperature wave front is represented by a dimen-
sionless coordinate s=sg,, which satisfies the conditions

a () = 0, fl)=0, o@)=0, 6() =1 @.1)

The position of the wave front s= s, for given boundary conditions and dimensionless constant A is
found by solving the system of equations (2.14) numerically.
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Fig, 1 Fig. 2
Analysis of the self-similar gsolution obtained for different values of the parameters A shows that
two different modes of propagation of heat exist:

1. A temperature wave of the first kind (TW-I) —a mode of propagation of heat with supersonic ve-
locity. This mode has the following properties:

d) the temperature wave propagates with finite velocity with respect to the initial boundary with zero
temperature;

b) the velocity of the wave front of TW-I is always greater than the local isothermal velocity of sound
¢=vRT (supersonic heating);

c) the density and other hydrodynamic quantities behind the front of the TW-I increase;
d) between the piston and the wavefront of TW-I there is an isothermal shock wave,
An example of the supersonic propagation of heat is shown in Fig. 1.

2. A temperature wave of the second kind (TW-II), which is a2 mode of propagation of heat with sub~
sonic velocity. This mode has the following main properties:

a) the wave front of the TW-II has zero heat flux and maximum density at this point;

b) the velocity of the wave front of TW-II is always less than the local isothermal velocity of sound
(subsonic heating);

c¢) the density and velocity behind the wave front fall (see Fig. 2);

d) the region between the wave front of TW-II and the shock wave which moves ahead of it is almost
adiabatic (the heat fluxes are small), the front of the shock wave is somewhat blurred by the thermal con-
ductivity and is an isothermal jump.

A change in the mode of propagation of heat is determined by the values of the parameters A, If has
been shown that when

A< Ay (3.2)
~ where A« is a certain dimensionless constant, the TW-II mode exists,
When

A A, (3.3)

the TW-I mode exists.

Using Eqs. (2.17) and the expression for d, in terms of the fotal energy E of the interaction of the
source of radiation during the time 7:

%= (g+ 1) E /" 3.4)
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P the left-hand side of the inequalities (3.2) and (3.3) can be
04 , written in the form

[ g—

a6t /—’\\ : \

| Fos \ A = g (g + 1) BT ETDpt—e p—(et) ~(3.5)
085 \

where c¢= 2(av'-1)/3.

o
v In particular, it follows from relations (3.2)-(3.4) and
Edgs. (2.2) that for the case of a completely ionized plasma

22 ‘V N (in the case g=1) the TW-I mode exists when
E S E._ 1, @R '
’ ’ N 7 “}T>‘2‘7"* DKO (3.6)
a4 o 17 7%

i and the TW-II mode exists when
Fig, 3

E iy, AT
T L

(3.7)

The dimensionless constant A, is found by numerical solution of the self-similar problem A.

In this case in relations (3.6) and (3.7) for y = Y s the value of A is 3,75, However, the gas-dynamic
motion becomes of comparatively little importance. (the drop in density on the shock wave in the depth of
the TW front is not greater than 1.5), and only begins at values of A greater than 50.

4, We have noted above that problem A is self-gimilar provided the conditions (2,11) are satisfied.
If g is arbitrary (for example, for q(0, t)=q,=const), the problem is not self-similar. However, the nu-
merical solution of this problem shows that for the TW-II mode in the heating region,i.e., in the region
between the wave front of TW-II and the vapor-vacuum boundary, the solution of problem A in time approaches
the self-similar mode, in which the required functions have the form

Fi(m, t) = f1(s) Fot™t (s=m/ At")

Figure 3 shows a graph of the dimensionless temperature as a function of the self-similar variable
s, which illustrates how the solution asymptotically approaches the self-similar mode in the heating region,
(Self-similar problems of this type were first considered by Sakharov, Zel'dovich and their co~workers,
A similar problem, ignoring the thermal conductivity, was considered in {12, 13]).

In the TW-II mode it can be assumed approximately that the pressure at the front of the temperature
wave (Pg) is equal to the pressure at the front of the shock wave (Py), which moves in front of the TW with
respect to the "initial background," with density p(m, 0)=p, (see Fig. 2). From the value Py=Pr is easy
to find the mass velocity (Dy=v0.5(y +1)PTp,) and other parameters of the shock wave,

Calculations show that the solution of the problem can be constructed as follows. In the region 0=
m=m7 enveloped by the temperature wave a self-similar solution is constructed from which the pres-
sure on the temperature-wave front Pp=P(mT, t) and the depth of heating mt are determined, Using the
condition Py =P the self-similar solution is matched to the non-self-similar solution under the existing
conditions of the shock wave which moves in front of the temperature wave with respect to the background
P =P

The dimensionless variables and the required functions in the heating region can be represented in
the following form:

m = g0V /dp—atn/ dy2/dm
. v{m, H=a (.S‘) q(()l—-b) /dR(a—}-l) /dxo—q /dtn"
T(m, t)=f(s) qgu—b) /dR(1+ab)/dMD—2 /d game .1
p(m,t)=29 (s qg(a—l) /d p—ata-1) /dug 1d,m

where d=2a+1—3b, and
Wi(m, t) = o ()g0t5, g (m, 1) = @ (s) got*
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where ¢(s)=1 for s=0 and ¢(s) =0 for s >0, and

. 20—1g—3

_ 2n1 . ny
n=t+ftg, m=g—F 2= 1

y nl
The problem is self-similar for arbitrary values of g >—1 (the case when g=1 has no physical mean-
ing since in this case the energy of the laser radiation introduced is infinite).
From the self-similar solution one can find numerically the values of the dimensionless coordinate
of the wave front of the temperature wave s=s;, where the following conditions are satisfied:

fsy) = 0,_ a(s) =0, o(s) =0

and the dimensionless pressure B(sq)=8; > 0. For example, for the case when vy = /3 when the plasma is
completely ionized (a= /Z, b=0) and for a constant boundary flux of radiation (g=0) we have s,=0.6 and
By=0.42,

The depth of heating of the material and the pressure on the heating front are found from the equations

mp = $; (%o? qza—b—l R—z(a+1))1/ dyg/3titom /3 4.2)

PT =B, (%qu(a—b)R—(a-l-l))l/d 2¢ /3t /8 (4‘3)

Assuming further than pr=py, we find that the mass velocity and the mass coordinate of the shock
wave respectively have the following form:

Dy = YOS T T IR eai B s 4 “v
— VO,S(T +1) l31 ol (lqi YR /211 dy [3414ma 6
My = e TBT 1T/ b0 (0 R yr s (4.5)

Comparison of the parameters of the shock front and the temperature wave enables us to determine
(apart from a dimensionless factor) the critical instant of time at which the self-similar mode is approached.
In fact, the difference between the mass coordinates which define the position of the shock front and the
temperature wave has the form

Am = my,—mp =s, (uozq:a—b—lR—Z(a-'rl))l / dtg /3+14n: /6 (XO _ tn, /2) (4.6)

where
Yo = VOBGTF D 6/3 -+ 1+ m /6L 5%pl (BN gy eyt /¢

Since in the TW-II mode the shock wave moves in front of the temperature-wave front, we must have
Am >0,

It follows from Eq. (4.6) that Am vanishes when t=0 and t=t«, where

te = (VOB T DB (g/3+m )6+ 1)t stpfey/m (RO G Tggmeyremse il
Consequently if 2a+1— 3b >0, a > 1, then when g< 3@—1)/2 the self-similar mode occurs when t > tx,
where the "critical" time t=t4 is given by Eq. (4.7).

In particular, the TW-II mode exists at the asymptotic stage of the heating and vaporization process
when g< 0, i.e., when the flux is very large (infinite) at the initial instant t=0, andthen when t > 0 decreases
sharply followmg a power law and also when g=0, i.e., in the case when q(0, t)=q,= const. At the initial
stage of the process the TW-I mode occurs.

When g > 3(@—1)/2 the self-similar TW-II mode exists in the initial stage of the process, i.e., when
t<tsx. In the asymptotic stage the TW-II mode changes into the TW-I mode; i,e., supersonic heating oc-
curs.
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In the case when g=3(¢—1)/2, the self-similar mode occurs both in the heating region and in the

shock-wave region. This case has been considered in Sec. 3.

When vy = 5/3, g=0 (constant radiation flux at the boundary), a = %, and b=0 (completely ionized gas),

the temperature T, the depth of heating mp=m, and the value t=tx (the instant when the modes of heat
propagation change) have the form

10.
11,

i2.

13.

T (m, t)=f(s) g*R"%; "
my = 0.6g0 Rt

ty = KoGoPy R~ (0.410.24 (v + 1)) = Yy #0q005 R
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